Mid-infrared Interferometry of the Mira Variable Rr Sco with the Vlti Midi Instrument
نویسندگان
چکیده
We present the results of the first mid-infrared interferometric observations of the Mira variable RR Sco with the MID-infrared Interferometer (MIDI) coupled to the European Southern Observatory’s (ESO) Very Large Telescope Interferometer (VLTI), together with K-band observations using the VLTI commissioning instrument VINCI. The observations were carried out in June 2003, when the variability phase of the object was 0.6, using two unit telescopes (UT1 and UT3), as part of the Science Demonstration Time (SDT) program of the instrument. The projected baseline lengths ranged from 73 to 102 m, and a spectral resolution of 30 was employed in the observations, which enabled us to obtain the wavelength dependence of the visibility in the region between 8 and 13 μm. The uniform-disk diameter was found to be 18 mas between 8 and 10 μm, while it gradually increases at wavelengths longer than 10 μm to reach 24 mas at 13 μm. The uniform-disk diameter between 8 and 13 μm is significantly larger than the K-band uniform-disk diameter of 10.2±0.5 mas measured using VLTI VINCI with projected baseline lengths of 15–16 m, three weeks after the MIDI observations. Our model calculations show that optically thick emission from a warm molecular envelope consisting of H2O and SiO can cause the apparent mid-infrared diameter to be much larger than the continuum diameter. We find that the warm molecular envelope model extending to ∼2.3 R? with a temperature of ∼1400 K and column densities of H2O and SiO of 3 × 10 21 cm and 1 × 10 cm, respectively, can reproduce the observed uniform-disk diameters between 8 and 10 μm. The observed increase of the uniform-disk diameter longward of 10 μm can be explained by an optically thin dust shell consisting of silicate and corundum grains. The inner radius of the optically thin dust shell is derived to be 7–8 R? with a temperature of ∼700 K, and the optical depth at 10 μm is found to be ∼0.025.
منابع مشابه
Temporal Variation of the Warm Molecular Layers around the Mira Variable RR Sco Detected with the VLTI/MIDI Instrument
Infrared spectroscopic observations of asymptotic giant branch (AGB) stars with the Infrared Space Observatory (ISO) have revealed the existence of a quasi-static, warm, dense molecular envelope close to the star (e.g., Tsuji et al. [4], Yamamura et al. [5], Cami et al. [1], Matsuura et al. [2]). Although this warm molecular envelope is most likely to play an important role in mass loss, its fo...
متن کاملCalibration of MIDI , the Mid - infrared Interferometer for the VLTI
Calibration of MIDI, the Mid-infrared Interferometer for the VLTI MIDI is the MID-infrared Interferometric Instrument at the Very Large Telescope Interferometer (VLTI). It will perform long-baseline stellar interferometry in the N band (8. . . 13 μm). In the run-up of setting up MIDI, some preparatory tasks had to be solved concerning the calibration of the instrument in the laboratory. Being a...
متن کاملInterferometric Detection of Planets/Gaps in Protoplanetary Disks
We investigate the possibility to find evidence for planets in circumstellar disks by infrared and submillimeter interferometry. Hydrodynamical simulations of a circumstellar disk around a solar-type star with an embedded planet of 1 Jupiter mass are presented. On the basis of 3D radiative transfer simulations, images of this system are calculated. These intensity maps provide the basis for the...
متن کاملMulti-wavelength interferometry of evolved stars using VLTI and VLBA
We report on our project of coordinated VLTI/VLBA observations of the atmospheres and circumstellar environments of evolved stars. We illustrate in general the potential of interferometric measurements to study stellar atmospheres and envelopes, and demonstrate in particular the advantages of a coordinated multiwavelength approach including near/mid-infrared as well as radio interferometry. We ...
متن کاملDetecting planets in protoplanetary disks: A prospective study
We investigate the possibility to find evidence for planets in circumstellar disks by infrared and submillimeter interferometry. We present simulations of a circumstellar disk around a solar-type star with an embedded planet of 1 Jupiter mass. The three-dimensional (3D) density structure of the disk results from hydrodynamical simulations. On the basis of 3D radiative transfer simulations, imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007